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Abstract 
In this paper, we study a supplier-retailer supply chain under nonstationary stochastic 
demand. Depending on the logistics cost rates of the supply chain partners and their 
accounting schemes, there may be substantial differences between individually and 
collectively optimum inventory management policies. We propose transfer payments 
between the supply chain partners as a measure to eliminate incentives for departing 
from collectively optimum policies and thus make them incentive compatible. In case the 
supply chain faces changes in the demand pattern, demand forecasts are required for 
both stages for periodic updates of their strategy parameters. We propose a simple 
smoothing technique to obtain these forecasts. Both, transfer payments and the 
forecasting method combined, provide a method to manage a supply chain optimally with 
respect to three criteria. First, total operating costs are minimized, second, no member of 
the supply chain has incentives to deviate from collective optimality and third, the system 
is reactive to changes in demand patterns. 

1. INTRODUCTION 

The objective of a supply chain is to maximize profit, i.e., the difference between the revenues 
generated from customers and the costs incurred in supply chain operation. This objective can be best 
accomplished if the supply chain is well coordinated. Lack of coordination may lead to phenomena 
such as the well-known bullwhip effect, i.e., increased demand fluctuations at different stages in the 
upstream direction of the supply chain. The bullwhip effect can cause severe inefficiencies because 
maintaining acceptable service levels may require very high inventory levels. 

Despite the above facts many supply chains are poorly coordinated. There are many obstacles to 
coordination, such as conflicting incentives of individual supply chain partners, lack of adequate 
information at the different stages or operational inadequacies, leading e.g. to large replenishment 
lead times. 

This paper focuses on incentive obstacles for coordination in supply chains. If supply chain partners 
would care only for systemwide performance, they would behave in such a way as to maximize 
overall profit. Unfortunately, the behavior which maximizes overall profit may not maximize each 
partner’s individual profit. E.g. suppliers typically do not care for consumer backorders and therefore 
tend to hold lower inventories than those required for an overall optimum. In practice, neither are 
supply chain partners altruistic nor is there any authority which can enforce decisions to be taken 
with only overall system performance in view. Transfer payments between supply chain members are 
a possibility to eliminate their incentives to deviate from collectively optimum behavior. 

We study a one-product supply chain consisting of a supplier and a retailer under stochastic 
nonstationary demand. The supplier is fed by an outside source with infinite capacity. Further, there 
are constant replenishment lead times between this source and the supplier and between the supplier 
and the retailer. Costs are accounted for holding inventory and for consumer backorders, but there are 
no fixed ordering costs. We propose a method to manage such a system with three objectives in 
mind: 
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• Inventory replenishment policies for all stages are due to minimize total supply chain costs. 

• The system is to be incentive compatible in the sense that no member of the supply chain can 
reduce his own costs by deviating from the behaviour required for minimum total supply chain 
costs. 

• The supply chain is to be capable of responding to instationarities in demand. 

2. DESCRIPTION OF THE SYSTEM AND MINIMUM COSTS 

The system corresponds to that studied by [1] and [2] and we use the same notation. Consider a one-
product supply chain with one supplier (Stage 2) and one retailer (Stage 1). Time is divided into an 
infinite number of periods of length T . There are constant lead times 2L  for shipments from the 
outside source to the supplier and 1L  for shipments from the supplier to the retailer. Each stage may 
order any nonnegative amount of the product in each period at the next higher stage. There are no 
fixed order costs and no quantity discounts. The supplier is charged holding cost 2h  per period for 
each unit in his stock or in transit to the retailer. The retailer’s holding cost is 1 2h h+  per period for 
each unit in his stock ( 1 20, 0h h≥ > ). Customer demand which cannot be met immediately by the 
retailer is backlogged and each unit charged with backorder cost p  per period. All backorders are 
filled in the end. 

In each period t , the following sequence of events occurs: 

1. Shipments arrive at each stage. 

2. Possible backorders are filled by the retailer if he has enough stock available. 

3. Replenishment orders are placed at both stages. 

4. Orders are shipped and will arrive in period 1/ 2t L+ . 

5. Consumer demand occurs and is obeyed if the retailer has enough stock available. Unmet 
demand is backlogged. 

6. Inventory holding costs and backorder costs are charged. 

Before demand, we define for Stage i : echelon inventory level, itIL , is all inventory at stage i  or 
lower in the system minus consumer backorders; echelon inventory position, itIP , is itIL  plus 
inventory currently in transit to stage i . Dτ , total demand over τ  periods is a random variable with 
density and distribution ( )xτφ  and ( )xτΦ , respectively and mean value τµ . We assume 1( )xΦ  is 
continuous and increasing for 0x ≥  and 1(0) 0Φ = . Mathematical notation is as follows: 
[ ] max(0, )x x+ = , [ ] max(0, )x x− = −  and [ ]E x  is the expected value of x . 

2.1 COLLECTIVE OPTIMALITY 

Our objective is to identify ordering policies that minimize overall costs for systems of the above 
type. This involves – for the case of two stages and a finite time horizon – recursive solution of a 
two-dimensional functional equation. [3], [4] and [5] prove that this problem can be decomposed in 
two one-dimensional optimization problems which can be solved sequentially if an infinite time 
horizon is considered and total costs are – virtually – partitioned in a particular way between the 
retailer and the supplier. An additional result is that among periodic-review policies, an echelon base 
stock policy minimizes total average costs. In a an echelon base stock setting, each stage i  orders – 
in each period – the amount required to raise his echelon inventory position to a specific echelon 
base stock level is . 
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We define 0 1
1 1

ˆ ( )tG IL D−  as the retailer’s costs in period t , where 
 ( ) [ ] ( )[ ]0

1 1 2Ĝ x h x h p x
+ −= + + . (1) 

In the same period, the retailer’s expected costs for period 1t L+ , 0
1 1( )tG IP , are 

 ( ) ( )10 0 1
1 1

ˆ LG y E G y D + = −  . (2) 

The value of y  for which ( )0
1G y  is minimal, is the retailers optimum echelon base stock level *

1s . It 
is found by inverting 

 ( )1 21 *
1

1 2

L h p
s

h h p
+ +

Φ =
+ +

. (3) 

Next, we define the ‘induced penalty function’ ( )0
1G y  that measures the costs arising at the retailer 

as a result of the supplier’s inability to meet his demand 

( ) ( )( ) ( )0 0 * 0 *
1 1 1 1 1min ,G y G s y G s= − . (4) 

This penalty is charged to the supplier. So his total costs in period t  amount to 
( ) ( ) ( )0 1 0

2 2 1Ĝ y h y D G y= − + . (5) 

The supplier’s expected costs in period t  are 0
2 2( )tG IP , where 

( ) ( )20 0
2 2

ˆ LG y E G y D = −  . (6) 

The supplier’s optimum base stock level is *
2s , the value of y  that minimizes 0

2 ( )G y . 

2.2 INDIVIDUAL OPTIMALITY 

In the following, we give the costs actually incurred at both stages. The retailer is charged 1 2h h+  for 
each unit stocked and p  for each unit backordered in each period. To allow more flexibility, we 
introduce a backorder cost partitioning between the retailer and the supplier. The coefficient α  and 
1 α−  describe the retailer’s and the suppliers share, respectively. We define 1

1 1
ˆ ( )tG IL D−  as the 

retailer’s costs in period t , 

( ) ( )[ ] [ ]1 1 2Ĝ y h h y p yα+ −= + + . (7) 

The retailer’s expected costs in period 1t L+ , 1 1( )tG IP , are 

( ) ( )
( )( ) ( ) ( ) ( )

1

1 1

1
1 1

1 1
1 2 1 2

ˆ L

L L

y

G y E G y D

h h y h h p x y x dxµ α φ

+

∞
+ +

 = − 

= + − + + + −∫
. (8) 

The retailer’s cost not only depends on his own echelon base stock level, 1s , but also on the 
supplier’s, 2s . If 2s  is low, there is a chance that the supplier cannot completely fill the retailer’s 
order. Therefore, the retailer’s cost, as a function of the strategy parameters are 

( ) ( )( )
( ) ( ) ( ) ( )

2

2 2

1 2

1 1 2 1 2 1

2 1 1 1 1 2

, min ,L

L L

s s

H s s E G s D s

s s G s G s x x dxφ
∞

−

 = − 

= Φ − + −∫
. (9) 

The supplier’s period t  backorder costs, 1
2 1

ˆ ( )tG IL D− , are 

( ) ( ) [ ]2
ˆ 1G y p yα −= −  (10) 

and his expected backorder costs in period 1t L+ , 2 1( )tG IP  

( ) ( )1 1
2 2

ˆ LG y E G y D + = −  . (11) 
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After inventory holding costs are accounted for, the supplier’s expected costs can also be written as a 
function of 1s  and 2s  

( ) ( ) ( ) ( ) ( )

( ) ( )

2 1

1 2 2

2

2 1

2 1 2 2 2 2 1 2 1 2 1

0

2 2

,
s s

L L L

L

s s

H s s h h s s x x dx s s G s

G s x x dx

µ φ

φ

−

∞

−

= + − − + Φ −

= + −

∫

∫
. (12) 

As (9) and (12) show, costs for Stage , {1,2}i i ∈ , 1 2( , )iH s s , depend on Stage i ’s own strategic 
decision as well as that of the other Stage ,j j i≠ , i.e. on 1s  and 2s . In order for the retailer to react 
optimally on the supplier’s choice 2s , he has to choose the 1s  that minimizes his costs given the 
supplier’s 2s . We denote Stage i ’s best reply mapping by ( )i jr s , 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2 1 1 1 2 1 2

2 1 2 2 1 2 2 1

, min ,

, min ,

x

x

r s s H s s H x s

r s s H s s H s x

+

+

+

∈

+

∈

= ∈ =

= ∈ =

¡

¡

¡

¡
. (13) 

At any point ** **
1 2( , )s s  with ** **

1 1 2( )s r s∈  and ** **
2 2 1( )s r s∈ , each stage chooses a best reply to the other 

stage’s optimum base stock level. Such points are called Nash equilibria and are self-inforcing in the 
sense that none of the stages has an incentive to deviate unilaterally from it. 

2.3 COMPARISON OF INDIVIDUAL AND COLLECTIVE OPTIMA 

We use an example to illustrate some important properties of individual and collective optima. 
Parameters are given in Tab. 1. Further, we assume one-period demand to be normally distributed 
with mean 1 and standard deviation ¼. This implies that only a fraction of about 3·10-5 of the total 
demand is <0. So the above assumption that demand is positive holds reasonably well. 

Collectively optimum base stock levels *
1s  and *

2s  are obtained from (3) and (6) as 2.5 and 3.5, 
respectively. Fig. 1 shows costs for both stages as calculated with (9) and (12) along with best reply 
mappings. The only individual optimum (Nash equilibrium), ** **

1 2( , )s s , is the intersection point of the 
two reply curves at (2.1,3.3). It is obvious that there is a discrepancy between both equilibria. The 

 

Figure 1. The retailer’s (left) and supplier’s (right) costs as a function of 1s  and 2s . The white 
curves in both figures represent best reply curves for both stages. For the retailers’ best reply, the 

2s -axis is the abscissa, so irrespective of the supplier’s choice he chooses 1 2.1s =  as his optimum 
base stock level. As for the supplier, his abscissa is the 1s -axis. His optimum base stock level 
increases with that of the retailer. There is only one intersection point of the two reply curves, 

** **
1 2( , ) (2.1,3.3)s s =  so this is the only Nash equilibrium. The collective optimum (white arrows) is 

far from the retailers best reply curve but relatively close to that of the retailer. 
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average per-period costs amount to 1.13 and 1.36 at the collective and 
the individual optimum, respectively, so the difference is of the order of 
20%. Note that in our example, the supplier is charged 70% of the system 
backorder costs. With 1α =  the retailer would have to pay all backorder 
costs and there would be no incentive for the supplier to hold any stock. 
Moreover, 1s  and 2s  both refer to echelon inventory levels. Therefore, if 

2 1s s<  the supplier chooses an echelon inventory level that implies that 
the sum of the amount of material in his local stock and in transit to it be 
negative. Thus, we require that 2 1s s≥ . 

 

3. MANAGING THE SYSTEM 

In this section we propose a method to manage the system described above. The method consists of 
two parts. First, the collective optimum described above is made incentive compatible via transfer-
payments between the two stages. Second, both the supplier and the retailer have to rely on observed 
demand data to choose their base optimum base stocks. We describe an approach to dynamically 
estimate the two strategy parameters from potentially nonstationary demand data. 

3.1 TRANSFER PAYMENTS 

To achieve optimum systemwide performance, the retailer and supplier have to choose *
1s  and *

2s  as 
their echelon base stock levels. Thus, they could contract to use * *

1 1( , )s s  in order to achieve optimum 
performance. The problem with such a contract is that both sides have an incentive to deviate from 
this optimum because it is not a Nash equilibrium. Therefore the contract would also have to specify 
penalties for deviations which clearly is not beneficial to developing the level of trust required for 
successful supply chain partnerships. As an alternative approach, the supplier and the retailer could 
agree on a transfer payment 1 2( , )T s s  from the supplier to the retailer which eliminates incentives to 
diverge from the optimal solution. Formally, we can describe this payment as 

( ) ( ) ( )
( ) ( ) ( )

1 1 2 1 1 2 1 2

2 1 2 2 1 2 1 2

, , ,
, , ,

c

c
H s s H s s T s s
H s s H s s T s s

= −
= +

, (14) 

where 1 2( , )c
iH s s  is Stage i ’s costs after the payment. [1] propose to parameterizes the payment as a 

linear combination of Stage 1’s on-hand stock 1tI  and both stages’ backorders, itB , all accounted for 
at the end of period t , 

1 1 1 1 2 2t t tI B Bι β β+ + . (15) 

We define 1 1( )T IP  as the expected transfer payment at the end of period 1t L+  as 

( )

( ) ( ) ( ) ( )

1 1

1 1

1 1
1 1 1

1 1
1 1 1

L L

L L

y

T y E y D E y D

y x y x dx

ι β

ι µ ι β φ

+ −+ +

∞
+ +

      = − + −         

= − + + −∫
 (16) 

and 1 2( , )T s s  as the expected payment from the supplier to the retailer, 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )

2 2

2 2

2 1

2

2 1

1 2 2 2 1 1 1 2 1

2 2 1 2 1 1 1

1 2

, min 0,L L

L L

s s

L

s s

T s s E s s D T s s s D

x s s x dx s s T s

T s x x dx

β

β φ

φ

−

∞

−
∞

−

  = − − + + − −   

= − + + Φ −

+ −

∫

∫

. (17) 

Parameter Value 
α  0.3 
p  5 
1h  0.5 
2h  0.5 
1L  1 
2L  1 

Table 1. Parameters for 
the example considered 
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We have to determine the parameters 1ι , 1β  and 2β  such that the collective optimum * *
1 2( , )s s  is a 

Nash equilibrium for the cost functions 1 2( , )c
iH s s . To do so, we first note that 1 2( , )c

iH s s  is strictly 
convex in is , given that the supplier chooses * ,js j i≠  ([1]). Thus, to find minimum costs for Stage 
i , given js , we require the first partial derivative of 1 2( , )c

iH s s  with respect to is  to vanish and its 
second partial derivative with respect to is  to be positive. 

Several parameter sets qualify as solutions to the above problem. Among those, we choose 
1 1 2(1 )( )h hι α= − + , 1 0β =  and 2 2/(1 ) hβ γ γ α= − , where 2 * *

2 1( )L s sγ = Φ − . Fig. 2 shows that transfer 
payments based on these parameters do actually eliminate incentives to deviate from the collective 
optimum for both stages. 

3.2 DYNAMIC ESTIMATION OF *
1s  AND *

2s  

We assume that the supply chain is subjected to the some potentially time-dependent demand process 
of which the actual parameters are unknown and have to be estimated from observed demand data. 
Now consider the situation for the supplier and the retailer in period t . The data at hand are the 
individual orders observed in the past, i.e., tuples ( , ),i i it d t t≤ , where it  and id  denote the time of 
occurrence and the size of order i , respectively. To minimize the operating costs of the supply chain, 
the probability distribution of demand and hence *

1s  and *
2s  have to be estimated for period 1t + . We 

assume that the distribution of aggregated demand is estimated for each period 't  up to t  from the 
set of tuples with ' ' 1it t t≤ < + . Exponential smoothing is a simple and versatile method to obtain 
one-period forecasts from these estimates. If ( )y t  is the variable for which a forecast is required, 

( ) ( ) ( ) ( )
( ) ( )

1 1
ˆ 1
y t y t y t
y t y t

θ θ= + − −
+ =

% %
% , (18) 

where y%  and ŷ  are smoothed and estimated values of y , respectively. The smoothing constant θ  
determines to what extent past values are considered in the forecast. For 1θ = , past values are not at 
all accounted for, which corresponds to a random walk model without drift, whereas for 0θ = , (18) 
becomes a mere mean model. 

 

Figure 2. The retailer’s (left) and supplier’s (right) new cost functions after accounting for transfer 
payments. The white curves in both figures represent best reply curves for both stages. Note that the 
only intersection point of the curves is now at the collective optimum ( * *

1 2( , ) (2.5,3.5)s s = ). Thus, 
the transfer payments eliminate both stages’ incentives to depart from the collective optimum. 
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3.3 NUMERICAL STUDY 

We conduct a number of simulations to analyze the costs actually incurred when the supply chain is 
operated with the methods described above. Assume that actual demands correspond to a lognormal 
compound Poisson process, i.e. the intervals between two consecutive orders are exponentially 
distributed and the individual amounts ordered follow a lognormal distribution. Under this 
assumption, the demand process can be described completely by the Poisson rate λ  and the 
parameters of the lognormal distribution logµ  and logσ . Although costs and optimum values for 1s  
and 2s  can be calculated for any distribution of demand, we use demand processes that are not too 
sporadic. Under this condition, i.e., for 1Tλ >> , [6] show that period-aggregated demand 1D  
becomes asymptotically normally distributed with 

1 2
log log

1
exp

2
E D Tµ σ λ   = +    

 (19) 

and 
2

1 1 2
log

1 1
exp

2
Var D E D

T
σ

λ

     =         
. (20) 

During the simulations, λ , logµ  and logσ  are estimated from the individual orders observed during 
each period t  and then used to obtain one-period forecasts ˆ( 1)tλ + , logˆ ( 1)tµ +  and logˆ ( 1)tσ + . From 
these estimates, the mean and variance of period 1t +  demand are estimated by means of (19) and 
(20). 

We conduct two numerical 
experiments. In the first study, the 
supply chain is subjected to 
stationary demand, i.e. a demand 
process with constant parameters λ , 

logµ  and logσ , whereas in the 
second, the demand process takes a 
step change from one parameter set 

to another at 50t =  (Tab. 2). The mean and standard deviation of demand represented by the first 
parameter set (1. Experiment, 2. Experiment before the step) are 1 and ¼, respectively. For the 
second parameter set (2. Experiment after the step), the mean and standard deviation amount to 2 and 
½, respectively. All other parameter values are given in Tab. 1. In the first experiment, minimum 
costs would be incurred if the true stationary demand process were known and constant values of *

1s  
and *

2s  were chosen such as to cope with the true process. In practice, actual costs will be higher, as 
the true demand process is not know but has to be estimated from an observed realization. In the 
second experiment, there are two distinct time periods with stationary demand, respectively. So there 

are still costs due to imperfect knowledge of the 
process. However, in the analysis of this 
experiment, we will merely concentrate on 
estimating the costs involved in adapting the 
supply chain to the new level of demand that 
results from the step change. 

In the first experiment, the forecasted mean and 
variance of demand are highly dependent on the 
smoothing parameter θ . This parameter was 
varied between the simulations to estimate the cost 

 1. Experiment 2. Experiment 
Parameter  Before Step After Step 
λ  20 20 20 

logµ  -3.1073 -3.1073 -2.4142 
logσ  0.4724 0.4724 0.4724 

Table 2. Parameters sets used for the simulations. The step 
change in the second experiment occurs after 50 time units. 
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Figure 3. Average per period costs as a function 
of the smoothing constant. Each dot represents 
the average costs calculated from one simulation 
over 500 time steps for a given θ . 
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effects involved. 100 simulations were conducted for each value of θ  and each simulation covered 
500 time units. Fig. 3 shows that average per-period costs increase with θ . This can be explained by 
the fact that with high values of the smoothing parameter the system becomes too reactive to high-
frequency fluctuations in demand which leads to inventory levels that are either too low or too high. 
With lower values of θ , the system becomes less and less reactive to high-frequency fluctuations. In 
the limit case 0θ =  (not shown), the system does no longer react to ‘new’ data at all but chooses *

1s  
and *

2s  such as to match some demand assumed on an a-priori basis or the first value observed. Note 
that the average costs shown in Fig. 3 converge to the 1.13 calculated above for * *

1 2( , )s s . 

Fig. 4 shows the results of a single simulation within the second experiment. As a result of the step 
change from one parameter set to the other at 50t = , average period-aggregated demand changes 
from 1 to 2 units at the same relative standard deviation (25%). The smoothed logµ  takes about 50 
time units to cope with the new demand level as a result of the low value of the smoothing constant 
( 0.1θ = ). This phenomenon is well reflected in the dynamics of the optimum echelon base stock 
levels and the operating costs of a system. Costs are constantly high between 50t =  and 100t =  and 
decrease subsequently to fluctuate around their new mean value. 

As in the first experiment, we consider the cost effects of various values of θ . As mentioned above, 
we are now interested in estimating the costs involved in reacting to a systematic change in demand. 
To estimate these, we first estimate average per-period costs after the system has fully adapted to the 
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Figure 4. Dynamics of the key variables in a single simulation, 0.1θ = . Above left: actual (grey) 
and average theoretical (black) per-period demand. Above right: the smoothed logµ  (grey) lags 
about 50 time units behind its true value (black). Below left: *

1s  (gray) and *
2s  (black) both increase 

to cope with the new demand but also lag behind their optimum values by about 50 time units. 
Below right: Too low values for *

1s  and *
2s  (below left) lead to very high costs between 50t =  and 

100t = . 
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new demand level and subtract these from the costs actually observed in the simulation after the step 
change. These are the costs caused by the step change. These costs typically have high values at the 
beginning ( 50t = ) and subsequently decrease to fluctuate around zero. To account for the total of 
these costs, we cumulate them up to the end of the simulations ( 500t = ). Fig. 5 shows that for 

0.7θ ≤  the total adaptation costs decrease with increasing θ . This can be explained by the fact that 
with low values for θ , our base stock levels lag behind their optimum values. This results in too low 
inventory levels and high backorder penalties for a certain time after the step change. 

From the analysis of both experiments, we can conclude that with high values of θ , we are overly 
reactive to short-term demand fluctuations whereas with low θ , we are at risk of laging too far 
behind any systematic changes of demand. So, the choice of the optimum level of smoothing must be 
made such as to avoid both problems as far as possible. This can only be based on data or a-priori 
assumptions about the demand process. 

4. DISCUSSION AND CONCLUSIONS 

We propose a method to optimally manage a 
supply chain. The method relies in the first place 
on a one-period forecast of the distribution of 
demand. We use exponential smoothing of the 
parameters of our process but smoothing the 
parameters of period-aggregated demand would 
work as well. On the basis of predicted demand, 
transfer payments can be determined that 
compensate both the retailer and the supplier for 
their costs incurred in not choosing individually 
optimum base stock levels but a collective 
optimum instead. This eliminates incentives to 
deviate from collective optimality and ensures that 
overall costs are actually minimized. 

To implement our method in a supply chain, an 
essential prerequisite is that point-of-sale information is available at both stages. Moreover, both 
stages have to agree to the cost accounting schemes involved and be ready to disclose their logistics 
cost rates. Especially the last point may be critical. Our work shows that cooperation in a supply 
chain may reduce costs substantially. This is a strong argument towards more cooperation in a supply 
chain. 
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Figure 5. Total costs involved in the adaptation 
of the supply chain to a new demand level as a 
function of the smoothing constant. Each dot 
represents total costs calculated from a 
simulation over 500 time steps for a given θ . 


