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Introduction

The purpose of cluster analysis is to conjecture plausible differences in kind amongst a given
collection of instances. This is also what our human visual system excels at; it has evolved to facilitate
quick and considered detection of the visually like and unlike through a wide variety of cues — e.g.
location and relative proximity, movement, shape, colour, texture, and matching against predetermined
patterns. Consequently, visualization is a natural and powerful resource for cluster analysis; it is
especially valuable in identifying unanticipated structure.

Unfortunately, the same evolutionary path has meant our visual system is poorly equipped to
be of much help in identifying high dimensional structure. And most data these days are of high, and
ever increasing, dimensionality. Consequently, automated methods of pattern recognition and cluster
analysis have seen increasing recent use and development; even so, intuition as to what constitutes a
“cluster” in high dimensions remains largely, though by no means exclusively, based on our experience
with our own visual perception — e.g. near neighbours, k-means, local density modes, etc.

Automated and purely visual methods for cluster detection are largely complementary in the
circumstances in which they have most value. Automated methods may be routinely applied to
data of many more dimensions than three, where our visual experience and ability necessarily end.
Unfortunately, to do so, automated methods rely (at least implicitly) on determining pre-defined
patterns in data configurations and so different methods can produce different clusterings. Moreover, in
two or three dimensions, data configurations are routinely constructed on which a favourite automatic
method will fail, but for which the human visual system excels.

The point of visual clustering is to use interactive data visualization tools in concert with
automated methods so as to take best advantage of both. Following Hurley and Oldford (2011),
we do this by introducing a graph structure, called a navigational graph, or navGraph, whose vertices
represent a unique pair of variates. At each vertex, then, sits a two dimensional space defined by
the variates there. When we add only edges between vertices which share a variate, the edge itself
represents a three dimensional space formed by variates of the union of the variate pairs at each node.
Such a navGraph is called a 3d-transition graph in Hurley and Oldford (2011). Visualization methods
will be restricted to these 2- and 3-d spaces; whereas automated methods could be applied to any
number of variates, and hence dimensions, from the data itself.



For example, consider the graph shown at the centre of Figure Clockwise from the large

A navGraph for selected pairs of variates from the Olive data.
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Figure 1: A 3d-transition graph for selected pairs of variates from the Olive data. The “bullet” is
the large (yellow) vertex at pl:11. Vertices connected to the bullet vertex are coloured differently
(orange) from those which are not (black). Edges connect vertices which share a variate — hence the
transition/edge is “3d”. Outside each node, the point cloud of the 572 data points is shown for that
variate pair.

(yellow) vertex or “bullet”, the vertices are labelled by pairs of variates: p1:11, a:e, pl:e, 0:a, p2:s,

(%))

s:12, and s:a. The colon separates the variate names, in this case “shortnames” for the longer

variate names given in Table Each vertex represents a pair of variates and each edge connects

Table of Variate names for the Olive data.

Short name ‘ a e 11 12 o pl p2 s

Fatty Acid ‘Arachidic Ficosenoic Linoleic Linolenic Oleic Palmitic Palmitoleic Stearic

Table 1: Variates are percentage of fatty acid in each of 572 olive oils from various regions of Italy.
See Forina (1983) et al for details.

vertices whose variate pair share a variate. This means that the vertices represent two dimensional
data spaces, and the edges three dimensional spaces — ideal number of dimensions for visualizing the
data. A walk on this graph should correspond to 2d data visualizations at each node (e.g. the 2d-
point clouds which appear at each vertex of the above graph) and a 3d data visualization on the edges
joining vertices.

In what follows, we use this data set to illustrate a new interactive scatterplot tool for visual
clustering which, as proposed in Hurley and Oldford (2011), uses graph structures like that shown



in Figure [1| to navigate high dimensional data through low dimensional subspaces — any walk on
this navgraph is a low dimensional trajectory through the higher dimensional space. The software
illustrated is from our R package called RnavGraph (Oldford and Waddell, 2011) and is freely available
from the Comprehensive R Archive Network (http://cran.r-project.org/).

The next section shows features of RnavGraph which are useful to visually cluster the Olive data.
This is followed by a discussion of the size of the graph may be usefully reduced and an example of
navGraph on image data.

Visually clustering the Olive data using RnavGraph

As can be seen from the point clouds shown in Figure 1} there is considerable structure in this
data set and we might expect to separate the data points into several groups. From the cloud at the
bullet, we see that there seem to be several, perhaps five to seven groups that we might distinguish
based simply on ellipsoidal regions of high density. Proceeding clockwise, the next two plots suggest
that the variate e (Eicosenoic acid) seems to dramatically separate the data into two major regions.
The bottommost plot of Figure [1| also indicates at least two groups, a large cloud at the left and a
sparser cloud at the right. Closer inspection, however, suggests the right most cloud might be split
into one or more horizontal lines and a strong vertical grouping at the right. Continuing clockwise
we see again the possibility of at least two large groups. The last two point clouds reinforce the idea
of some points separating into fairly regularly spaced locations and others into a more contiguously
dense region. It is hard to imagine an automated method which would successfully identify all of these
various groupings which so readily present themselves to the eye.

It is difficult to tell whether these groupings agree or disagree without some means of visually
connecting one set of point clouds to another. Here is where the edges provide value. In RnavGraph,
we can select the bullet on the navigational graph and drag it towards any other vertex, provided it
has an edge connected to the bullet’s vertex. As Figure [2] shows, dragging the bullet along an edge

A 3d transition.
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Figure 2: The same navigation graph is shown with four different bullet positions. As the bullet is
dragged from its starting position at p1:11 on the left down to its final position at pl:e on the right,
the corresponding point cloud is rotated in 3d to rotate the 11 axis into the e axis. Note how the
colours of the vertices and the bullet change as the bullet is selected and moves. Note also that the
visited edge also changes colour.



effects a visualization of the data in the three dimensions corresponding to that edge — one scatterplot
is dynamically rotated into the other, through this 3d space, as the bullet moves. The points are
visually connected through motion and the bullet can be stopped at any point, or moved back and
forth — whatever the analyst chooses to best effect the pattern recognition.

The RnavGraph interface actually has two major pieces — the navigation graph, or navGraph,
and an interactive scatterplot. The two displays are shown side by side in Figure [3| as they might

RnavGraph session windows.
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(a) The navGraph window. (b) The interactive scatterplot window.

Figure 3: On right, the brush has been used to highlight the top group in the point cloud.

appear on a data analyst’s screen. The positions of the points in the scatterplot display are determined
by the position of the bullet in the navGraph display. Here we show that the analyst has selected a
brushing operation and highlighted all points in the top group by sweeping out a rectangular area.

Once selected, any operation in the “Modify” section of the scatterplot display may be applied to
the selected points. In particular, the selected points may be “deactivated”, causing them to disappear
from all views, so as to allow the analyst to focus on the remaining data. Selecting “reactivate” from
the “Modify” section will return all deactivated points to view.

Having deactivated the points shown selected in Figure [3 in Figure [ we see the result of a
number of steps taken by the analyst on the points that remain (i.e. on the non-highlighted grey
points of Figure [3)).

As the bullet location on the navGraph of Figure [ indicates, the visualization has returned to
the p1:11 two dimensional space to view the remaining active points. With fewer data points, the
analyst has also rescaled the data by zooming in (effected through scrolling while the mouse is overtop
the point cloud). In the “World view” (top right corner of the scatterplot window) we see the relative
size of the scaling numerically (next to “Zoom”) and, more immediately, visually as the smaller white
rectangle. This rectangle also shows where in the entire (2d) data cloud, the displayed data is located;
grabbing this tiny rectangle and moving it around allows the analyst to dynamically pan over any
region of the data. Finally, the analyst has selected and coloured three different subsets of the data
in this view. Two small groups — one green, one blue — are distinguished at the top of the point cloud
and a singleton point at the left of the point cloud has been coloured brown. The other points remain
coloured grey. These colourings indicate at least a tentative grouping within the active group



Focus on the remaining active points.
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Figure 4: On right, deactivated points are removed, the data zoomed, and points coloured.

Figure [5] shows the analysis a little further on. As indicated by the lighter grey edges, the

Old groups reinforced, new groups appear.
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Figure 5: Same subset as before but now viewed in the o:a space.

navGraph has now been walked from pl:11 to pl:e, then to a:e, and from there finally to o:a
resulting in the point cloud display of Figure [}l Each step of this walk is along a 3d-transition, the
resulting display being a rigid rotation of the data through that 3d-space; the walk becomes a sequence
of visually natural rigid rotations from one 2d space to another. All the while the smooth rotations

allow the analyst to follow any group of points by their movement.

In the point cloud of Figure [5, we see that the groups identified earlier also appear to separate
in this display, thus reinforcing the earlier choice. Moreover, at least two more groups have appeared
— the horizontal group at the top of this point cloud (now coloured orange) and the remaining grey
points which seem to have a coarser granularity of measurement. Because of this regular spacing,
Occam’s razor might suggest, at this point, to treat this latter bunch of points as a single group,
rather than as possibly ten separate vertical groups. Of course, as the analysis progressed yet further,
a different choice could yet be made.

The top (orange coloured) group identified in Figurewas selected largely on the basis of being



horizontal; some points were not selected to be orange because they aligned with the regular spacing
of the remaining grey points. This could be investigated more closely by zooming in further on this
region of the plot. Figure [f] shows a smaller region of the o:a space and uses star glyphs as described

Zooming in more and replacing dots with star glyphs.
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Figure 6: Closer examination of the o:a space, with dots replaced by glyphs.

in Hurley and Oldford (2010). Colour is preserved so that the previously proposed groupings are not
lost. For each point, these star glyphs show variate values on separate radial axes, with axes repeated
to ensure that every pair of variates occur next to one another somewhere in the glyph (in fact, those
shown here are the Hamiltonian decomposition arrangements of Hurley and Oldford, 2010). This
means that we not only have the spatial positions, shown in Figure [6, with which to group points, but
we can also compare nearby points on all other variate values simultaneously, simply by comparing
the shapes of the glyphs.

For example, the point previously identified as a possible outlier (and coloured brown) in Figure
is less certainly an outlier in Figure In the latter, it lines up along one of the grey columns
of Figure [5] and might reasonably belong to the same group. However, when one looks at its glyph
in Figure [0} it is clear that this point is very different from its potential cluster mates and probably
merits separate investigation.

More subtle comparisons can be made based on the shape of glyphs of at least near neighbours.
An example is the grey glyph to the left of the cursor arrow shown in Figure [f] By spatial location
in this plot, it aligns with the granularity of the gray group. However, closer examination of this grey
glyph in comparison with those below it, and with the orange glyph to the right of the arrow cursor,
suggests that it belongs more to the orange horizontal group than to the grey vertical group. Similarly,
the grey group itself shows considerable variability in glyph shape, some having rather large relatively
convex segments on their right.

RnavGraph also allows the glyphs to be selected and temporarily placed anywhere on the display
to facilitate comparison of, and grouping by, glyph shape. One might, for example, move apart points
which have occluded another. The top of the grey column of points, to the right of the arrow cursor
in Figure |§| have been moved apart in Figure [7| (a). The top two grey glyphs and the left most grey
glyph more clearly belong with their orange neighbour at the far left; the remaining grey glyphs are
not as strongly similar in shape to these. The “true” grouping of these olive oils by geographic region
is shown in Figure [7] (b).



Moving points to avoid occlusion.
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(a) Glyphs moved apart (b) True geographic regions/areas

Figure 7: Closer examination of the o:a space, with dots replaced by glyphs.

If the geographic regions are the “true” cluster structure, we seem to be able to recover much of
this structure in RnavGraph simply through spatial structure of the data in low dimensions, occasionally
supplemented by glyphs that summarize many dimensions by 2d-shape. The points selected in Figure
(and later deactivated) are all from the “South” region of Italy; the remaining points are from either
the “North” or “Sardina”. In Figure 4l two more groups were identified; these were both from the
“Sardinia” region — one from the “Coastal Sardinia” area (green), the other from the “Inland Sardinia”
(blue). The horizontal group (orange) group of Figure [5|is from the “North” region, “Umbria” area,;
the remaining grey points are from the “North” and mainly from either the “East-" or “West-Liguria”.

From this limited example, it is clear that purely visual clustering can be very powerful and
allows the analyst to decide on the spot which features of the data configuration stand out as deter-
mining groups — spatial density in different dimensions, measurement granularity, point cloud shape,
simultaneous comparison of all variates on a small number of points (glyphs), and so on. Though
these features might have been unanticipated by the analyst, they are readily seen in these displays
and so can be immediately used to distinguish groups.

One might also choose an automated method and use colour to distinguish the groups selected
by that method. Figure [§|shows results for two different, and popular, automated clustering methods;

Start with groups given from some automated method.

(a) k-means: kmeans (data,k=9) (b) Model based clustering: Mclust(data,1:20)

Figure 8: Closer examination of the o:a space, with dots replaced by glyphs.

for comparison only the same points as in Figure [5| are shown. In Figure |8 (a), k-means is used with



k = 9; there are known to be nine different geographic regions, so this choice is a bit of a cheat. In
Figure |8 (b), model-based clustering (Fraley and Raftery, 1999) is used and up to twenty different
clusters are considered. Surprisingly, neither method separates the “Inland” from the “Coastal” areas
of Sardinia (green groups, bottom right of each plot). Both attempt to separate the top horizontal
group (orange, “Umbria”), with model based doing a better job than k-means; k-means, however,
attempts to separate “West-Liguria” (grey, left vertical) from “East-Liguria” (right, blue) which is
ignored by model-based clustering. Neither method points out the outlying point, which had been
identified in the purely visual analysis.

Different automated methods are predisposed to find different structures. As such, they are
perhaps best used as starting points for a cluster analysis. Visualization tools, as demonstrated
above, could then be used as a quality assessment of the proposed clusters, with the freedom to
change proposed clusters and to introduce new clusters as the analyst sees fit. Better still would be
to combine the results of a variety of automated methods from the start. Oldford and Zhou (2011)
provide a formal framework and automated mechanism for such “ensemble” methods.

Graph construction

A serious challenge is to determine the low-dimensional spaces worth visiting. For p variables,
there are (’2’) possible nodes in a navGraph. Hurley and Oldford (2011) describe a variety of methods
for construction of graphs with a small number of nodes and edges. All such methods are available in
the RnavGraph package and any 3d- or 4d-transition graph can be viewed through the navGraph(---)
function, with an unlimited variety of visualizations beyond point clouds (see Waddell and Oldford,
2011).

Experience to date suggest that scagnostic measures (Wilkinson et al, 2005, and available as
the scagnostics package in R) are particularly valuable in identifying subspaces with interesting data
structures. RnavGraph’s scagNav(---) function produces navGraphs whose vertices have variates
scoring highest on any combination of these scatterplot diagnostics. Figure [9] shows several such

Scagnostic based navGraphs
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Figure 9: Different scagnostic measures are tailored to different two dimensional data configurations.
Here the 3d-transition navGraphs are shown for the top 15% of scatterplots in the Olive data for
each of the named scagnostic measures. A total of 9 x 2 such measures (and their absence), and any
combination thereof, are available from scagNav.

graphs for the Olive data. Each of these graphs could be walked, looking for the specified structure (or
absence of structure). Note that for this data set, there are (g) = 28 possible 2d-scatterplots/vertices
to consider. Scagnostics allow this to be reduced to the 7 considered in Figure



While scagnostics, and other measures, may be calculated over all pairs of variates to determine
the vertices of an interesting navGraph, the number of pairs to examine grows as p? for p variates. For
very high dimensions, when the context (see Hurley and Oldford, 2011) does not naturally produce
a graph with small numbers of vertices and/or edges, as with other methods some dimensionality
reduction should be pursued before building the navGraph.

Figure [10]is an example of a data set of images taken from a movie Brendan Frey recorded of

Image data
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Figure 10: 560-dimensional images nonlinearly embedded in a five dimensional space using local linear
embedding (Roweis and Saul, 2000, knn = 12). Each row shows the navGraph of all 3d-transitions,
the corresponding scatterplot of images, and a zoom in on a particular region of the 2d-subspace
(shown in the “world view” of the plot). As indicated by the bullet position, in the corresponding
navGraph, the first row shows the configuration in the first two LLE dimensions (i1:12), the second
row partway along a 3d-transition from i1:1i2 to (i2:1i5).

himself making faces. Each image is an array of 28 x 20 greyscale pixels; column concatenated, each
image is a point in p = 560 dimensions. Local linear embedding (Roweis and Saul, 2000) was used to
reduce the dimensions from 560 to only 5 and the navGraph for all (g) = 10 variate pairs constructed.

Clearly, there is considerable structure in this data and it is not restricted to the first two
dimensions. By using a navGraph to explore the reduced dimension set of variates, the target number
of dimensions can be considerably larger than usual, e.g. 10 or 20. Indeed, multiple dimension
reduction methods (e.g. ISOMAP, Tenenbaum et al, 2000) might be used in concert. All methods
used for the Olive data could be used on the reduced dimension data set, including scagnostics to
further reduce the complexity of the navGraph. The only concern, of course, with non-linear methods
is whether the structure revealed in the reduced space is a characteristic of the data and not an artefact
of the method.
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RESUME (ABSTRACT)

The structure of a set of high dimensional data objects (e.g. images, documents, molecules,
genetic expressions, etc.) is notoriously difficult to visualize. In contrast, lower dimensional structure
(esp. 3 or fewer dimensions) is natural to us and easy to visualize. A not unreasonable approach,
then, is to explore one low dimensional visualization after another in the hope that, together, these
will shed light on the higher dimensional structure. A familiar example is the parallel coordinate plot,
where a sequence of one-dimensional projections are connected to provide insight into the structure of
a high dimensional data set.

In this paper, we describe the graph theoretic structure, recently proposed in Hurley and Oldford
(2011, Comp. Stat.), that represents low-dimensional spaces as graph nodes and transitions between
spaces as edges. Of interest, are walks along these graphs that reveal meaningful structure. If the nodes
are one-dimensional, a walk corresponds to a parallel coordinate plot; if they are two dimensional and
edges exist, say, only between 2d spaces which share a variate, then the walk could be represented
dynamically as a series of scatterplots, one transitioning into the next via a 3d rigid transformation.

We show how these graphs can be used to dynamically explore high dimensional data to visually
reveal cluster structure. RnavGraph is the tool we have developed for that purpose. We show how this
visualization tool can be used for visual cluster analysis — in place of, or in concert with, automated
methods. This demonstrated by a quick analysis of the “Olive data” containing eight measurements of
fatty acid concentrations on 572 Italian olive oils.

These graphs, unfortunately, grow in size with the square of the number of dimensions. For-
tunately, there are numerous means for constructing only the more interesting regions of each graph.
Some restrictions are imposed by the statistical context, others by empirical measures on the data
itself. Of the latter, scatterplot diagnostics (scagnostics) are especially valuable. When the objective
is to visually cluster the data, nearest neighbour based dimension reduction methods are particularly
effective in conjunction with appropriate scagnostics. The “Frey image” data is used to demonstrate
how tmages can be analysed using RnavGraph.



