Rental Apartment Prices in the province of Zurich Assignment 1 for Spatial Statistics (STAT 946)

Adrian Waddell

University of Waterloo

October 9, 2008

Waterloo

1 / 34

- Overview of real estate market in Zurich
- Fit a model

 $price \sim location + other covariates + error$

- which apartments have large residuals?
- can model be used to classify good and bad deals?
- automate process, daily update

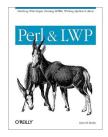
Waterlo

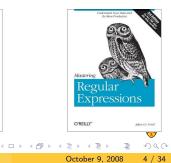
2 / 34

Data Sources

Final Data: 3088 apartments for rent in province Zurich (Switzerland), collected on Friday, October 3, 2008.

street, nr, postal code, city, longitude, latitude, number of rooms, living area, apartment style, floor, price


Data Collection


Perl Script 1: Search for all apartments in Zurich, save the html page sources for each list \rightarrow 165 *.txt files.

Perl Script 2: Information extraction form html sources (parsing). Lookup longitude and latitude with Google API (geocoding). (library Geo::Coder::Google).

Books on this Topic: (all O'Reilly)

Data Processing

- All data imported into R.
- Coordinate Reference System chosen to be the "Swiss coordinate system". Transformation of housing data.
- Outliers detection (in location and price) and deletion. 3144 3088 = 56 outliers.

Waterloo

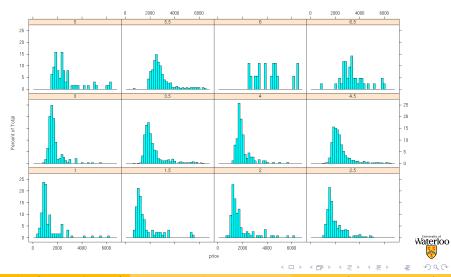
5 / 34

All available apartments for rent (n = 3088)

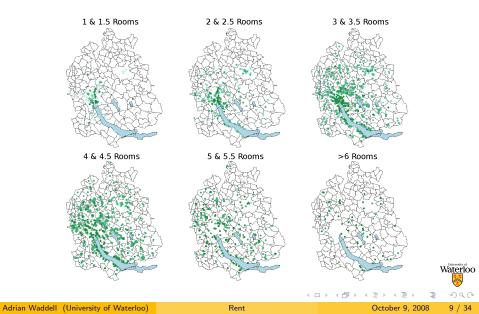

Adrian Waddell (University of Waterloo)

< 3

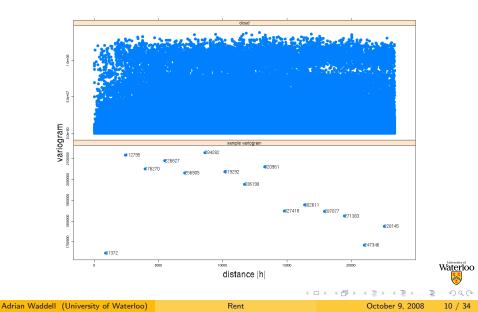
Water loo


SAC

Price vs. number of rooms


7 / 34

Price distribution for Nr. of Rooms $\,\leqslant\,6.5$ and price $<\,6700$



Adrian Waddell (University of Waterloo)

Price vs. number of Rooms

Is the location sufficient to explain the monthly rent?

Model

- Location is not sufficient to describe price.
- Use Model

$$log(price) = m(\cdot) + e(s)$$
$$e(s) = f(s) + \epsilon$$

- non-spatial trend: m(area, nrRooms, ...) is chosen to be a linear model → variable selection
- spatial trend: e(s), model Variogram, Kriege
- residuals: ε

Waterloo

11 / 34

Variable selection: apartment style

	Number or Rooms							
style		[1,2)	[2,3)	[3,4)	[4,5)	[5,6)	[6,12)	Not Avail
*	Apartment	114	228	750	873	201	26	24
	Attic	1	0	0	0	0	0	0
*	Attic flat	5	8	27	36	17	3	0
	Bachelor flat	0	2	0	0	0	0	0
	Bifamiliar house	0	0	2	3	3	4	0
*	Duplex	1	14	40	101	51	14	2
	Farm house	0	0	1	1	1	4	0
*	Furnished flat	67	59	62	22	5	3	13
	Loft	5	1	2	2	0	0	10
*	Roof flat	4	25	55	44	15	2	2
*	Row house	1	0	1	15	16	14	1
*	Single house	0	0	1	9	11	31	0
	Single room	10	1	0	1	0	0	2
	Studio	4	0	0	0	0	0	1
	Terrace flat	0	0	2	3	4	0	0
	Terrace house	0	0	0	0	0	1	0
	Villa	0	0	0	0	1	3	0

Adrian Waddell (University of Waterloo)

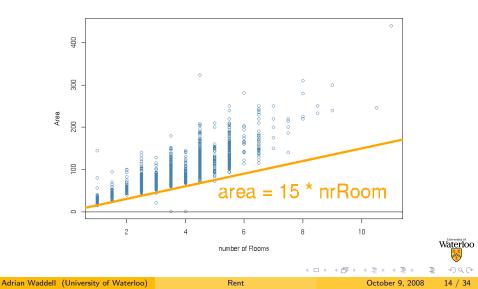
Ξ

• • • • • • • •

-

Waterloo 590

Variable selection: apartment are


a	ea available		
nr Room	YES	NO	
[1,2)	163	49	
[2,3)	275	63	
[3,4)	791	152	
[4,5)	937	173	
[5,6)	283	42	
[6,12)	96	9	
Not Avail	37	18	
total	2582	506	

- Only use apartments with styles marked with * (n = 3013)
- Only use apartments with available living area data

Waterloo

13 / 34

Variable selection summary

Model fitting

- Use area, style and nrRoom as covariates
- \bullet Omit NA's and $nrRoom > 6.5,~area > 5 \rightarrow n = 2464$
- Fit linear model

 $log(price) = \beta_0 + \beta_1 \cdot area + \beta_2 \cdot nrRooms + \beta_3 \cdot style + e(s)$

Waterloo

15 / 34

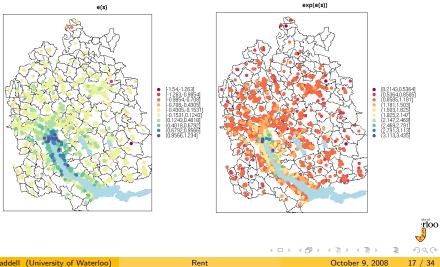
October 9, 2008

where nrRooms and style are factor variables.

Fitted Model

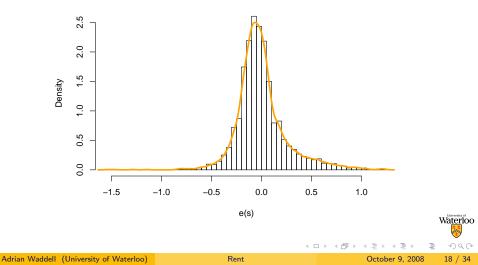
Coeffi	cien	ts	:
--------	------	----	---

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.6575610	0.0313623	212.279	< 2e-16 ***
area	0.0075245	0.0002692	27.951	< 2e-16 ***
nrRoom:1.5	0.1374210	0.0419900	3.273	0.00108 **
nrRoom:2	0.2065559	0.0413576	4.994	6.32e-07 ***
nrRoom:2.5	0.2818575	0.0365278	7.716	1.73e-14 ***
nrRoom:3	0.2314567	0.0372024	6.222	5.77e-10 ***
nrRoom:3.5	0.2923112	0.0353915	8.259	2.37e-16 ***
nrRoom:4	0.2188876	0.0401093	5.457	5.32e-08 ***
nrRoom:4.5	0.2421336	0.0381684	6.344	2.66e-10 ***
nrRoom:5	0.2953283	0.0511765	5.771	8.89e-09 ***
nrRoom:5.5	0.2279178	0.0450000	5.065	4.39e-07 ***
nrRoom:6	0.4685403	0.0738201	6.347	2.61e-10 ***
nrRoom:6.5	0.2776106	0.0624401	4.446	9.14e-06 ***
style:Attic flat	0.2061413	0.0288673	7.141	1.22e-12 ***
style:Duplex	0.0008961	0.0204669	0.044	0.96508
style:Furnished flat	0.5765866	0.0217763	26.478	< 2e-16 ***
style:Roof flat	-0.0006020	0.0236714	-0.025	0.97971
style:Row house	-0.1118195	0.0509342	-2.195	0.02823 *
style:Single house	0.1376427	0.0504790	2.727	0.00644 **
Signif. codes: 0 '**	*' 0.001 ''	**' 0.01 '*'	0.05 '	. ' 0.1 ' ' 1

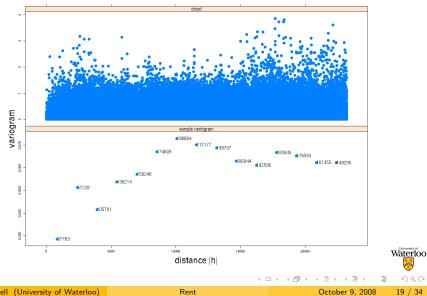

Residual standard error: 0.254 on 2445 degrees of freedom Multiple R-squared: 0.5796, Adjusted R-squared: 0.5765 F-statistic: 187.3 on 18 and 2445 DF, p-value: < 2.2e-16

< ロト < 同ト < ヨト < ヨ

Waterloo


DQC

Spatial trend: $e(s) \& exp\{e(s)\}$


Distribution of e(s)

Data Non-spatial Spatial Trend

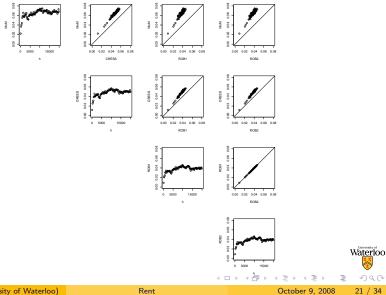
Omnidirectional Variogram (MoM) for e(s)

Adrian Waddell (University of Waterloo)

Robust Variogram estimates

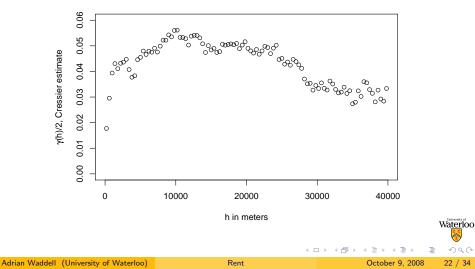
$$\begin{split} \mathsf{MoM}(h) &= \frac{1}{2} \cdot \frac{1}{|\mathsf{N}(h)|} \sum_{(s_i, s_j) \in \mathsf{N}(h)} \{e(s_i) - e(s_j)\}^2 \\ \mathsf{CRESS}(h) &= \frac{1}{2} \cdot \frac{1}{0.457 + 0.494/|\mathsf{N}(h)|} \left\{ \frac{1}{|\mathsf{N}(h)|} \sum_{(s_i, s_j) \in \mathsf{N}(h)} |e(s_i) - e(s_j)|^{1/2} \right\}^4 \\ \mathsf{ROB1}(h) &= \frac{1}{2} \cdot \frac{\mathsf{Median}[\{e(s_i) - e(s_j)\}^2 : (s_i, s_j) \in \mathsf{N}(h)]}{0.457} \\ \mathsf{ROB2}(h) &= \frac{1}{2} \cdot \frac{\mathsf{Median}[\{e(s_i) - e(s_j)\}^{1/2} : (s_i, s_j) \in \mathsf{N}(h)]}{0.457} \end{split}$$

as defined in the course notes.

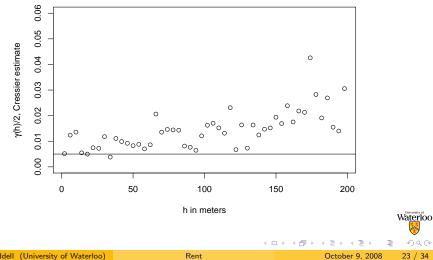

Image: A matrix of the second seco

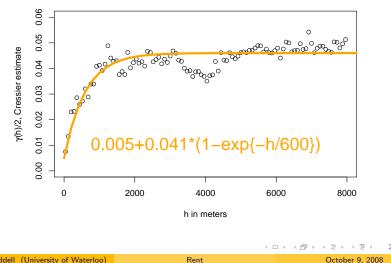
October 9, 2008

Waterloo


20 / 34

Robust Variogram estimates


Variogram Modeling: up to h = 40km

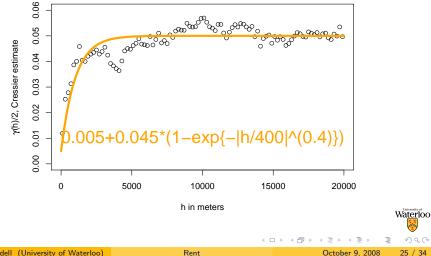

Variogram Modeling: Nugget?

nugget = 0.005

Adrian Waddell (University of Waterloo)

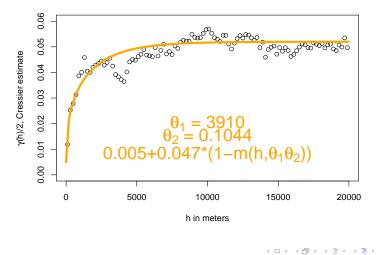
Variogram Modeling: Fitting by eye up to h = 8 km


choosing an exponential model by eye


Adrian Waddell (University of Waterloo)

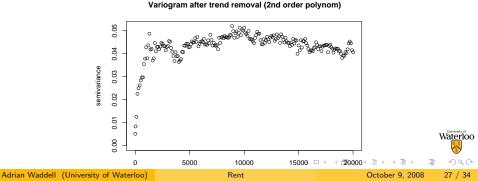
Waterloo

24 / 34

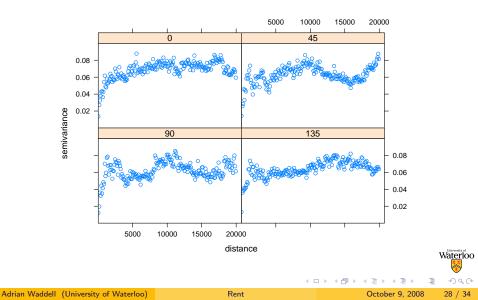

Variogram Modeling: Fitting by eye up to h = 20km

Adrian Waddell (University of Waterloo)

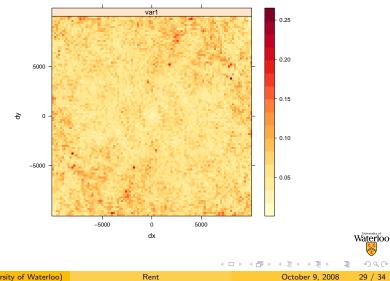
Variogram Modeling: Fitting bye eye up to h = 20km


choosing an matern model by eye

Waterloo


26 / 34

Intrinsic Stationary? Weak Stationary?


- γ(h) flattens as h gets larger, Cov(e(s + h), e(s)) goes to 0 as h goes to a large distance
- If data is intrinsic then it is also weak stationary.
- However looks like the mean is not constant for all locations s.
- Data may be weak stationary
- More investigation has to be done.

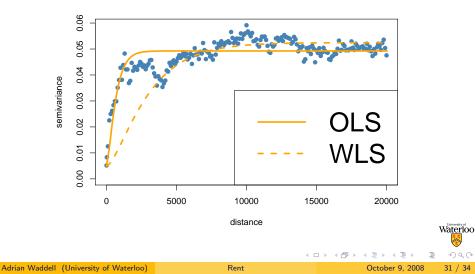
Directional Variograms

Directional Variograms: Variomap

Fit of empirical variogram with OLS

- Model chosen: Matern, nugget = 0.005 fixed, θ_2 variabel, initial values : $\sigma^2=0.05$ and $\varphi=2000$
- OLS Fit

 $\gamma_{ols}(h) = 0.005 + 0.0442 \cdot (1 - matern(h, \theta_1 = 440.656, \theta_2 = 1))$


• WLS Fit

 $\gamma_{WLS}(h) = 0.005 + 0.047 \cdot (1 - matern(h, \theta_1 = 1999, \theta_2 = 1))$

- Sum of Squares: 0.00344686 and 54.92099
- Practical Range: 1761.974 and 7997.04

Waterloo

Fit of empirical variogram with OLS and WLS

ML and REML

- $\bullet\,$ Data set too large to run ML and REML
- Sampling doesn't yield good results
- cutoff can't be specified

< 17 ▶

October 9, 2008

Waterloo

32 / 34

Discussion

Results:

- Data may be weakly stationary
- Data is likely to be isotopic
- Data may be homogeneous
- Variogram Model fit by eye, Matern looks best
- Range of 1.5km-5km makes sense (size of a township)

Todo:

- In more detail analysis of trend.
- Maybe more complex non-spatial model (with postal code as covariate)

Waterloo

33 / 34

THANK YOU

